こんにちは。サメハダです。
8月に入り、株も為替も値動きが少なくなり「夏枯れ」の様相を呈していますね。
自動売買としては、値動きが少ないのは痛手ですが、「休むも相場」なので落ち着いて対応したいところです。
さて今回も、S&P500ダブル(SSO)の利確幅がテーマです。
ヒストリカルの1~4daysボラティリティを計算し、利確幅の設定を考えたいと思います。

TQQQでも計算した1dayボラだね!
結論
例によって最初に結論からお伝えします。1dayの価格変化率は次のようになりました。

内容をご説明します。
前回の振り返り
バックテストの結果
前回の試算では、SSOの利確幅を1㌦~30㌦で変えた場合の収益率について、公式のビルダーを使ったバックテストを行いました。結果は、利確幅が大きいほど利益率が高いということでしたね。

この傾向は、TQQQにおいても同様です。

利確幅をどのように決めるか
利確幅を「最大のリターン」で決めてしまうと、過去データに基づくと、利確幅はどこまでも大きくなってしまうというジレンマがありました。
これは、ここ最近の相場が強い上昇の動きをしていたことが理由です。
しかし今後もそのような相場が続くとは限りません。
そもそも、自動売買の特徴は、横ばいや下落局面でも自動で利益確定を狙えることだと思いますし、メンタル面でも定期的な確定利益を得ていることで安心感を得られる、ということだと考えています。
そこで、過去の1日ボラに基づき、最低でも何日に一回は利益確定するという状態をターゲットに利確幅を決めてみたいと思います。
- 過去データに基づくと、最大リターンを見込める利確幅は30㌦以上と大きすぎる。
- 最大リターンではなく、利確の頻度に着目して利確幅を決める。
このコンセプトは以前TQQQで行なった試算と同じです。

毎日、ジャンジャン利確お願いしゃ~す!
ヒストリカルボラの試算
いよいよ本題に入りましょう。今回の試算に関する概要からご説明します。
試算の概要
データ取得
直近10年(2011年1月3日~2021年7月31日)のSSOのヒストリカルデータを使用します。インベスティングドットコムさんの日次データを使わせていただきました。

Investing.comさん、いつもありがとうございます!
試算対象
直近10年における終値の日次変化率の分布を見ます。変化率のパターンは次の264通りです。
- 集計対象は2011年~2021年。1年ごとに11通り
- 変化期間は4通り(1日・2日・3日・4日間)
- 分布については、平均と各パーセント点で6通り
全部で、11×4×6=264個の数値を算出しました。
変化率は絶対値を使用
変化率は対数差乖離率の絶対値をとりました。
$$変化率=|LN(Xt)-LV(Xt-1)|$$
$$Xt$$ はt時点の価格(終値)
$$X(t-n)$$ はt-n時点の価格(終値)※n=1~4
対数差乖離率は、株価などの時系列データの分析に良く使われる一般的な手法です。
また、絶対値をとることについても、下落と上昇のバランスが概ね一致していることを事前に確認し、問題ないと判断しました。


サメハダがシッカリ見たから、安心してね!
試算結果
こちらが試算結果です。
1day変化率
1day | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|---|
平均 | 2.1% | 1.2% | 1.1% | 1.0% | 1.4% | 1.1% | 0.6% | 1.5% | 1.1% | 2.6% | 1.2% |
最大値 | 13.8% | 5.7% | 5.0% | 4.8% | 8.7% | 7.3% | 3.6% | 9.3% | 6.7% | 26.6% | 5.0% |
75%点 | 2.8% | 1.7% | 1.4% | 1.5% | 2.1% | 1.6% | 0.8% | 2.0% | 1.5% | 2.9% | 1.8% |
中央値 | 1.4% | 0.8% | 0.8% | 0.8% | 1.0% | 0.7% | 0.4% | 1.1% | 0.8% | 1.5% | 0.9% |
25%点 | 0.6% | 0.3% | 0.4% | 0.3% | 0.5% | 0.3% | 0.2% | 0.4% | 0.3% | 0.7% | 0.4% |
最低値 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
2days変化率
2days | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|---|
平均 | 3.0% | 1.8% | 1.4% | 1.5% | 2.1% | 1.5% | 0.9% | 2.2% | 1.7% | 3.2% | 1.7% |
最大値 | 14.3% | 7.1% | 8.2% | 8.8% | 15.1% | 11.1% | 3.7% | 12.9% | 8.1% | 31.6% | 6.2% |
75%点 | 4.1% | 2.8% | 2.1% | 2.1% | 2.8% | 2.1% | 1.2% | 3.0% | 2.4% | 4.1% | 2.6% |
中央値 | 2.2% | 1.4% | 1.2% | 1.1% | 1.6% | 1.0% | 0.7% | 1.6% | 1.4% | 2.0% | 1.3% |
25%点 | 1.1% | 0.7% | 0.4% | 0.6% | 0.7% | 0.5% | 0.3% | 0.8% | 0.6% | 0.8% | 0.4% |
最低値 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
3days変化率
3days | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|---|
平均 | 3.6% | 2.2% | 1.8% | 1.9% | 2.4% | 2.0% | 1.0% | 2.7% | 2.0% | 4.2% | 2.0% |
最大値 | 24.1% | 8.6% | 7.7% | 9.7% | 19.3% | 10.4% | 3.5% | 13.2% | 9.9% | 31.0% | 8.1% |
75%点 | 5.0% | 3.3% | 2.6% | 2.6% | 3.3% | 2.6% | 1.5% | 3.4% | 2.8% | 5.1% | 2.8% |
中央値 | 2.6% | 1.9% | 1.6% | 1.4% | 1.8% | 1.4% | 0.8% | 2.1% | 1.7% | 2.5% | 1.6% |
25%点 | 1.4% | 0.8% | 0.7% | 0.7% | 0.9% | 0.6% | 0.3% | 1.0% | 0.8% | 1.5% | 0.8% |
最低値 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
4days変化率
4days | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|---|
平均 | 4.2% | 2.6% | 2.2% | 2.2% | 2.7% | 2.3% | 1.2% | 3.2% | 2.3% | 5.0% | 2.3% |
最大値 | 23.0% | 8.6% | 9.8% | 10.3% | 21.8% | 10.1% | 4.2% | 16.3% | 11.6% | 41.3% | 8.4% |
75%点 | 5.7% | 3.8% | 3.2% | 3.1% | 3.6% | 3.4% | 1.8% | 4.1% | 3.2% | 5.5% | 3.2% |
中央値 | 3.4% | 2.1% | 1.8% | 1.7% | 2.0% | 1.6% | 1.0% | 2.5% | 1.9% | 3.3% | 2.0% |
25%点 | 1.6% | 1.0% | 1.0% | 0.8% | 0.9% | 0.7% | 0.4% | 1.1% | 0.9% | 1.7% | 0.9% |
最低値 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 0.0% |

ちょっと数字が多くない?

そうだね。じゃあ、思い切って情報を絞って見ていきましょう!
変化率の情報をどう使うか
表は情報量が多いので、思い切って平均と中央値に情報を絞って見ることにしましょう。グラフにすると次の通りです。

初めからそうせい!未熟もんが~
平均と中央値をグラフで確認




なかなかわかりやすくなりました。
中央値を使って考える
平均と中央値はどちらもその分布を表す”代表”のような数値ですが、どちらを使うべきでしょうか。
個人的にはここのデータ分布は対称に近いためどちらでも大差ないと思っています。ただ頻度という意味では厳密には中央値の方が正しいと思うので、どちらかというと中央値をメインに見ていきたいと思います。
- 平均値・・・全ての値を足した総和を個数で割ったもの。はずれ値(大きすぎる、小さすぎる)の影響を受けやすい。
- 中央値・・・順番が中央に位置するデータの値。データが偶数の場合は、中央の2つの平均を使う。中央値より大きいデータとと小さいデータの数が同じ(50%ずつ)。
中央値がそのまま利確幅の答えとなる
この中央値を利確幅として使用するというのが私の案です。
例えば、2021年の中央値と平均はそれぞれ次の割合です。
2021年 | 変化率の中央値 | 変化率の平均値 |
---|---|---|
1day | 0.9% | 1.2% |
2days | 1.3% | 1.7% |
3days | 1.6% | 2.0% |
4days | 2.0% | 2.3% |
この割合に基準価格を掛けると利確幅の金額が求まります。例えば、8/20時点の終値127.53㌦なので、利確幅の金額は次のとおりです。
2021年 | 中央値ベースの利確幅 | 平均値ベースの利確幅 |
---|---|---|
1day | 1.2㌦ | 1.5㌦ |
2days | 1.7㌦ | 2.2㌦ |
3days | 2.1㌦ | 2.6㌦ |
4days | 2.5㌦ | 3.0㌦ |
- 例えば、毎日利確を出したい場合は1dayを見ます。利確幅の金額は中央値ベースで1.2㌦、平均値ベースで1.5㌦です。
- 2日に1回程度は利確が出てほしいと思ったら2daysを見ます。利確幅の金額は中央値ベースで1.7㌦、平均値ベースで2.2㌦です。
- 以下、3日と4日も同様です。
変化率から導く利確幅は2㌦程度か
私は毎日とは言わないまでも、2日に一度程度は確定利益が出てほしいと考えています。
そこで、2daysの中央値を使うことにします。
従って、先ほどの表に基づいて利確幅は1.7㌦と決められました。
- 2日に一度程度の利益確定を目指し、2daysの中央値を使う。
- 利確幅は1.3%、ドルベースでは、1.7㌦。
- キリよく、1㌦か2㌦としても良さそう。
年によっても変動があるので臨機応変な対応が求められますね。
皆さんは、どう考えますか?
実際にSSOの運用を始めています。ただし1.7㌦の利確幅は感覚的に小さすぎる気がしたため、3㌦に設定しました。(ちょっと欲張りました。w)
1.7㌦だとスプレッド(現時点では0.48ドル)に対して低くなりすぎ、投資のうまみが減少すると考えたためです。

スプレッド対比の利確幅=1.7/0.48=3.5
なお、実際の成績はあまりよくありません。まだ短期間なのでなんとも言えないところですが。
凪の相場だと利確幅が小さい方が有利ですし、あまりスプレッドにこだわらなくても良いかもしれませんね。
せっかくなのでスプレッドについても見てみましょう。
補足情報:スプレッドの割合で比較してみる
補足①:TQQQと比較してどうか
気になるスプレッドについて確認します。8/21現在で、TQQQが0.82㌦、SSOが0.48㌦でした。

- TQQQ・・・0.82㌦(価格135.80㌦)
- SSO・・・0.48㌦(価格127.53㌦)
銘柄によって基準価格が異なるのため、スプレッド対比に利確幅を割合で表します。
銘柄 | 利確幅(例) | スプレッド対比の利確幅割合 |
---|---|---|
TQQQ | 2.5㌦ | 3.0 |
TQQQ | 3.3㌦ | 4.0 |
TQQQ | 4㌦ | 4.9 |
TQQQ | 5.8㌦ | 7.1 |

銘柄 | 利確幅(例) | スプレッド対比の利確幅割合 |
---|---|---|
SSO | 1㌦ | 2.4 |
SSO | 1.7㌦ | 4.0 |
SSO | 2㌦ | 4.8 |
SSO | 3㌦ | 7.1 |

例えば、SSOの利確幅1.7㌦のスプレッド対比の割合は4.0です。TQQQにおいて、これと同じ割合の利確幅を求めると3.3㌦です。3.3㌦ってTQQQの利確幅としてはかなり低いと感じてしまいますね。
表によると、私の設定したSSOの利確幅3㌦は、スプレッド対比の割合が7.1なので、これはTQQQに当てはめると、利確幅5.8㌦です。
TQQQの利確幅3㌦~6㌦はメジャーどころで、人気のある設定だと思うので、SSOの利確幅3㌦も悪くないと思ったのですが、まだイマイチ結果が出ていません。
TQQQは別格のパフォーマンスをたたき出していたので、感覚がマヒしているかもしれません。なにかをTQQQと比べることはあまり意味がないかも。
この辺は慣れもあると思うので、このままSSOの運用を続けていきながら試行錯誤したいと思います。
補足②:認定ビルダーの利確幅はどうか
気になるので、認定ビルダーの利確幅も見てみます。
SSOを採用している認定ビルダーさん現時点ではいないので、リスク・リターンの性質が似ているナスダック100(QQQ)を見てみます。
直近価格は、367.73㌦、スプレッドは2.21㌦でした。

そして、QQQを採用している認定ビルダーさんは3人いらっしゃいます。

各認定ビルダーさんの利確幅をまとめると次のとおりです。
認定ビルダー | 利確幅 | スプレッド対比の利確幅割合 |
---|---|---|
鈴さん | 2㌦、5㌦ | 0.9、2.3 |
あっきんさん | 3㌦、4.5㌦ | 1.4、2.0 |
サトウカズオさん | 5㌦ | 2.3 |

皆さん、スプレッド対比に利確幅割合は0.9~2.3とかなり低いです。
利確幅を小さくすると、利益に対してスプレッドの割合が大きくなり、投資の効果が減少すると考えています。
しかし、利確幅を大きくすると利確の機会を損失し、短期的にみたトータルリターンが少なくなる可能性もあります。もう少しだけ利確幅を小さくしたり、複数の利確幅を設定してみるなど、投資方針に応じてアレンジができそうです。
認定ビルダーさんのロジックは、やはり貴重な材料として参考にさせていただきます!
補足③:5日以上はどうするのか
最後にちょっとしたテクニックのご紹介です。
今回は1~4日間の変化率を算出しましたが、5日以上の数値はありません。5日以上の数値が欲しい場合はどうすれば良いでしょうか。
実は理論値を次のように期間の平方根を使って簡易的計算する方法があります。
- 期間Tのボラティリティは期間1のルートT倍に比例する。
- 例えば、5日の変化率がほしい場合、5days変化率=1day変化率×√5
これは統計学における標準偏差の性質を使った公式です。金融工学では、一般的にルートT倍法と言われています。
一応、1~4日で検算した結果がこちらです。2021年においてはほとんど差分も少なく、なかなか良い精度が得られていることがわかります。
【2021年:中央値】 | 1day | 2days | 3days | 4days |
---|---|---|---|---|
ヒストリカルデータ | 0.9% | 1.3% | 1.6% | 2.0% |
ルートT倍法 | – | 1.3% | 1.6% | 1.9% |
差分 | – | 0.0% | 0.0% | -0.1% |
【2021年:平均値】 | 1day | 2days | 3days | 4days |
---|---|---|---|---|
ヒストリカルデータ | 1.2% | 1.7% | 2.0% | 2.3% |
ルートT倍法 | – | 1.7% | 2.1% | 2.4% |
差分 | – | 0.0% | 0.1% | 0.1% |
厳密には、標準偏差に対して使用できる公式ですが、今回の変化率にも十分使用できそうです。

ふ~ん。ぼくにも計算できるかな?
総括
簡単に今回の内容をまとめます。
- 1day~4daysの変化率をそのまま基準価格に掛けることで、利益確定の希望頻度に応じた利確幅を算出できる。
- 5daysより大きな変化率もルートT倍法で計算できる。
- 利確幅と小さくすると頻度は上がるが、スプレッドの比率が上がり、相対的に手数料割合があがってしまうが、気にしすぎるのも良くない。最も重要なのはリターン。
- ただし、最大のリターンを見込めるのは過去実績では30㌦以上と大きくなる。
- バランス感覚を以って、利確幅を小まめに調整したり、複数用意するなどの対策が考えられる。
おわりに
いかがでしたでしょうか。
今回は、直近10年の1~4日間の変化率を算出し、利益確定の頻度に応じた利確幅を決定する方法についてご紹介しました。
個人的には、2日1回の利確を目指した”利確幅1.7㌦”は良い線いっていると感じています。
これまでSSOの記事をいくつか書いていますが、レンジや証拠金などロジック作成のための各パラメータが情報が出そろった感じです。
近いうちに各情報をまとめて、これからSSO投資を始める人に向けて情報提供の記事も作成したいと思います。
今回は以上です。ではまた!

最後まで読んでいただきありがとうございます!
インヴァスト証券トライオートETF無料口座開設はこちら
当サイトは投資の助言・勧誘を行うものではありません。掲載している情報については、その正確性・安全性等を保証するものではなく、あくまでも個人的見解の参考情報の提供のみを目的としております。閲覧者が当サイトの情報を直接または間接に利用したことで被ったいかなる損害についても当サイト運営者は一切の責任を負いません。投資・売買に関する最終決定はご自身で判断いただきますようお願いいたします。
コメント